Abstract

Within this work, monodisperse porous silicon nanospheres have been derived from monodisperse silica nanospheres via two different magnesiothermic reduction routes, namely (i) magnesiothermic reduction using a two-chamber set-up, and (ii) magnesiothermic reduction using NaCl as heat scavenger. Both methods allow a size- and shape-preserving preparation of mesoporous silicon. Crystalline silicon with a particle size of 56nm and a specific surface area of 198m2g−1 and amorphous silicon with a particle size of 35nm and a specific surface area of 623m2g−1 are synthesized using the two chamber and salt assisted routes, respectively. TEM micrographs confirm enhanced porous character of silicon from NaCl assisted route. An unstable electrochemical performance of the crystalline silicon is found, whereas the amorphous Si presents a stable electrochemical behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.