Abstract
Catalysis with phosphorus P(III) compounds (phosphorus trichloride and phosphorous acid) in the acylation of aniline with 3=hydroxy=2=naphthoic acid in various media (toluene, octane, chlorobenzene, para=xylene, ortho=xylene, ortho=chlorotoluene, mesitylene, pseudocumene, n.=deсan, ortho= dichlorobenzene, mixtures of ortho=xylene with nitrobenzene) upon boiling and vigorous distillation of water leads to the formation of 3=hydroxy=2=naphthoic acid anilide. With an increase in the reaction temperature in the range from 111 (toluene) to 170 °C (pseudo cumene), a monotonous increase in the initial rate of formation of the target product is observed. In this case, the temperature dependence of the logarithm of the velocity obeys the Arrhenius equation, and the activation energy Ea is 66.2 kJ/mol.
 Higher-boiling n.=decane (175 °С) and ortho=dichlorobenzene (180 °С) fall out of this dependence, in which the initial rate of formation of anilide 3=hydroxy=2=naphthoic acid, compared with that for pseudocumene (170 °С), decreases. The latter may be due to the decomposition or oxidation of the catalyst at such a high temperature with the transition of P(III) to P(V), which does not have catalytic activity.
 The interaction of aniline with 3=hydroxyl=2=naphthoic acid proceeds as a series of sequential and parallel reactions in which, in addition to 3=hydroxyl=2= naphthoic acid anilide, 3=aniline=2=naphthoic acid and its anilide are formed as impurities.
 The most acceptable solvents are ortho=xylene and ortho=chlorotoluene with boiling points of 146 and 156°C, in which the yield of the target product is up to 98%. Below 146 °C the reaction proceeds at a relatively low rate; above 156°C the amount of impurities increases significantly, mainly in parallel with an increase in the reaction temperature, and the maximum yield of 3=hydroxyl=2=naphthoic acid anilide decreases. This requires its additional purification, significantly complicating the technological process.
 The addition of 10–20% by volume of nitrobenzene to ortho=xylene leads to an increase in the yield of 3=oxy=2=naphthoic acid anilide by 1.25–1.42 times in the temperature range of 146–148°C with increasing solvent polarity (ε), respectively, from 2.3 to 7.64. This may be due to an increase in the quantity of the monomers of the catalyst and/or 3=oxy=2=naphthoic acid and aniline in reaction mass and the speed of water separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.