Abstract

A series of 3(2)-phosphonylated thiazolo[3,2-a]oxopyrimidines was synthesized for the first time by the reactions of chloroethynylphosphonates with unsubstituted and 5(6)-substituted 2-thiouracils. The reaction of chloroethynylphosphonates with 6-substituted 2-thiouracils bearing electron-donor groups (CH3, Ph) proceeded with high regioselectivity involving the cyclization through the N3-nitrogen atom to form new 3-phosphonylated thiazolo[3,2-a]-5-oxopyrimidines with good yield. In the case of unsubstituted and 5-methyl-2-thiouracils, cyclization occurred predominantly through the N1 atom and partially via the N3-nitrogen atom to form a mixture of the corresponding thiazolo[3,2-a]-7- and 5-oxopyrimidines. A dramatic change in the reaction regioselectivity was observed in the case of 6-trifluoromethyl-2-thiouracil that afforded 2- and 3-phosphonylated 5-oxothiazolopyrimidines in a 1:1 ratio.

Highlights

  • Thiazolopyrimidines, whose molecules includes both thiazole and pyrimidine rings, have a structural analogy with the antipsychotic drugs ritanserin and setoperone (Figure 1) [1,2,3]

  • The best known methods for the preparation of thiazolopyrimidines are based on condensation reactions

  • The most commonly used synthesis is the three-component condensation of 2-aminothiazoline, aromatic aldehyde, and ethyl cyanoacetate, which leads to the formation of 5- and 7-oxothiazolopyrimidine-6-carbonitriles (Scheme 1) [12,13]

Read more

Summary

Introduction

Thiazolopyrimidines, whose molecules includes both thiazole and pyrimidine rings, have a structural analogy with the antipsychotic drugs ritanserin and setoperone (Figure 1) [1,2,3].

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.