Abstract

Synthesis of 2-docosahexaenoylglycerol with high nutritional value was conducted by enzymatic ethanolysis of algal oil. The effects of lipase type, substrate molar ratio of algal oil to ethanol, reaction time, reaction temperature and lipase load on the content of 2-monoacylglycerols (2-MAGs) in the crude product were investigated. Under the optimal conditions, 27–31% 2-MAGs were obtained in the ethanolysis reaction. Lipozyme 435 exhibited 1,3-specific selectivity and maintained stable operational stability after 7 successive reuse cycles. The enzymatic ethanolysis catalyzed by Lipozyme 435 could both synthesize 2-MAGs and concentrate DHA. Further purification of 2-MAGs was performed with solvent extraction by 85% ethanol aqueous solution and hexane, obtaining 95% 2-MAGs in a yield of 67%. The contents of DHA in 2-MAGs product and 2-MAGs fraction were 74.76% and 75.66%, respectively, which were about 26% higher than that in the algal oil. Therefore, this method is efficient and environmental-friendly for synthesis of 2-docosahexaenoylgylcerol.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.