Abstract

A strong Lewis acid silylium ion was utilized for dehydrogenative annulation between dialkyl(1-naphthyl)silanes 1 and aldehydes 2. Silane 1a was reacted with [Ph3C][B(C6F5)4] in the presence of 2,6-di-tert-butyl-4-methylpyridine and aldehydes 2 to afford the annulation product, 1-silabenzo[d,e]isochromanes 3, in moderate isolated yields. The annulation occurred only at the 8-position on the 1-naphthyl group. The silylium ion-promoted hydrosilylation proceeded competitively to afford silyl ethers 4 via the same intermediates, silylcarboxonium ions, in the dehydrogenative annulation. The ratio of 3 and 4 was affected by solvents and the electronic properties of aromatic aldehydes; for example, the use of less polar solvents and that of benzaldehydes with an electron-withdrawing group at the para-position predominantly yielded 3. This annulation reaction was applicable to aldehydes bearing a heteroaromatic group and aliphatic alkyl groups. Judging from these results, both the formation of silylcarboxonium ions by in situ-generated silylium ions and the electrophilic aromatic substitution are important for this annulation reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.