Abstract

Exploring high-performance sensing materials is ultra-important for safety control. Herein, 1D α-MoO3/0D ZnO nanocomposites are prepared via a facile hydrothermal method and its microstructure is characterized through X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS). It is confirmed that the as-prepared nanocomposites are constituted by 1D α-MoO3 nanobelts (200–300 nm in width), with the surface loaded with fine ZnO nanoparticles. Sensing properties of the α-MoO3 and 1D α-MoO3/0D ZnO nanocomposites to ethanol are measured and compared. Interestingly, the ZnO-decorated α-MoO3 nanobelts exhibited excellent sensitivity and selectivity to ethanol at relatively low operating temperature (250 °C) when compared with that of the raw α-MoO3 nanobelts, indicating a good candidate of 1D α-MoO3/0D ZnO nanocomposites for future ethanol detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call