Abstract

Synthesis of indoles labeled with 13C-1H and 13C-19F spin pairs is described. All syntheses utilize inexpensive carbon-13C dioxide as the 13C isotope source. Ruthenium-mediated ring-closing metathesis is the key step in construction of the 13C containing indole carbocycle. Fluorine is introduced via electrophilic fluorination at the 7-position and via palladium-mediated cross-coupling at the 4-position. Indole and fluoroindoles are viable tryptophan precursors for in vivo protein expression. We show that they are viable also in in vitro protein synthesis using standard E. coli S30 extracts. Incorporation of the synthesized 13C-1H and 13C-19F spin pair labeled tryptophans into proteins enables high-resolution and high-sensitivity nuclear magnetic resonance (NMR) spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.