Abstract

1,3-Di(4-amino-1-pyridinium)propane tetrafluoroborate (DAPPT) ionic liquid was successfully synthesized, and was used as a modifier to functionalize graphene nanosheets through covalent binding of amino groups and epoxy groups in an alkaline solution. The as-prepared graphene-DAPPT nanosheets (Gr-DAPPT) were confirmed with transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV/vis and FTIR spectroscopy. A biocompatible platform based on Gr-DAPPT was constructed for the immobilization of hemoglobin (Hb) through a cross-linking step with chitosan and glutaraldehyde. The direct electron transfer and bioelectrocatalytic reaction of Hb immobilized on Gr-DAPPT surface were achieved. A pair of reversible redox peaks of hemoglobin was observed, and bioelectrocatalytic activity toward the reduction of H2O2 was also demonstrated, displaying a potential application for the fabrication of novel biosensors to sense H2O2. Such results indicated that Gr-DAPPT based interface would be a promising platform for biomacromolecular immobilization and biosensor preparation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.