Abstract

A bacterial P450 monooxygenase-based whole cell biocatalyst using Escherichia coli has been applied in the production of ω-hydroxy dodecanoic acid from dodecanoic acid (C12-FA) or the corresponding methyl ester. We have constructed and purified a chimeric protein where the fusion of the monooxygenase CYP153A from Marinobacter aquaeloei to the reductase domain of P450 BM3 from Bacillus megaterium ensures optimal protein expression and efficient electron coupling. The chimera was demonstrated to be functional and three times more efficient than other sets of redox components evaluated. The established fusion protein (CYP153AM. aq.-CPR) was used for the hydroxylation of C12-FA in in vivo studies. These experiments yielded 1.2 g l–1 ω-hydroxy dodecanoic from 10 g l–1 C12-FA with high regioselectivity (> 95%) for the terminal position. As a second strategy, we utilized C12-FA methyl ester as substrate in a two-phase system (5:1 aqueous/organic phase) configuration to overcome low substrate solubility and product toxicity by continuous extraction. The biocatalytic system was further improved with the coexpression of an additional outer membrane transport system (AlkL) to increase the substrate transfer into the cell, resulting in the production of 4 g l–1 ω-hydroxy dodecanoic acid. We further summarized the most important aspects of the whole-cell process and thereupon discuss the limits of the applied oxygenation reactions referring to hydrogen peroxide, acetate and P450 concentrations that impact the efficiency of the production host negatively.

Highlights

  • Oxidized w-hydroxy fatty acids (w-OHFAs) and a,w-dicarboxylic acids (a,w-DCAs) are multifunctional compounds useful for the production of polymers and musk fragrances

  • Polymers derived from saturated and unsaturated w-OHFAs are regarded as bio-based plastics with high water resistance, durability and chemical versatility (Liu et al, 2011). w-Oxyfunctionalized products derived from medium-chain length fatty acids such as dodecanoic acid (C12-FA) can be used to synthesize different bioplastics. 12-Hydroxydodecanoic acid (w-OHC12) serves as a building block for the production of poly(12-hydroxydodecanoate)

  • We show for the first time the application of an engineered CYP153A fusion construct in the synthesis of w-OHC12 by E. coli strains

Read more

Summary

Summary

A bacterial P450 monooxygenase-based whole cell biocatalyst using Escherichia coli has been applied in the production of w-hydroxy dodecanoic acid from dodecanoic acid (C12-FA) or the corresponding methyl ester. We have constructed and purified a chimeric protein where the fusion of the monooxygenase CYP153A from Marinobacter aquaeloei to the reductase domain of P450 BM3 from Bacillus megaterium ensures optimal protein expression and efficient electron coupling. Aq.-CPR) was used for the hydroxylation of C12-FA in in vivo studies. These experiments yielded 1.2 g l–1 w-hydroxy dodecanoic from 10 g l–1 C12-FA with high regioselectivity (> 95%) for the terminal position. The biocatalytic system was further improved with the coexpression of an additional outer membrane transport system (AlkL) to increase the substrate transfer into the cell, resulting in the production of 4 g l–1 w-hydroxy dodecanoic acid. Oxygenation reactions referring to hydrogen peroxide, acetate and P450 concentrations that impact the efficiency of the production host negatively

Introduction
Results and discussion
Conclusion and outlook
Experimental procedures
Conflict of interest
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call