Abstract

Type-2 diabetes is a chronic progressive metabolic disease resulting in severe vascular complications and mortality risk. Recently, DPP-4 inhibitors are conceived as a favorable class of agents for the treatment of type 2 diabetes due to the minimal side effects. Sitagliptin is the first medicine approved for DPP-4 inhibitor. Its structure involved three fragments: 2,4,5-triflorophenyl fragment pharmacophore, enantiomerically β-amino carbonyl linker, and tetrahydrotriazolopyridine. Herein, we are drawn to the possibility of substituting tetrahydrotriazolopyridine motif present in Sitagliptin with a series of new fused pyrazolopyrimidine bicyclic fragment to investigate potency and safety. Two series of fused 6-(aminomethyl)pyrazolopyrimidine and 6-(hydroxymethyl)pyrazolopyrimidine derivatives containing β-amino ester or amide as linkers were successfully designed for the new DPP-4 inhibitors. Most fused 6-methylpyrazolopyrimidines were evaluated against DPP-4 inhibition and selectivity capacity. Based on research study, β-amino carbonyl fused 6-(hydroxymethyl)pyrazolopyrimidine possesses the significant DPP-4 inhibition (IC50 ≤ 59.8 nM) and presents similar with Sitagliptin (IC50 = 28 nM). Particularly, they had satisfactory selectivity over DPP-8 and DPP-9, except for QPP. β-Amino esters and amides fused 6-(hydroxymethyl)pyrazolopyrimidine were developed as the new DPP-4 inhibitors. Those compounds with a methyl group or hydrogen in N-1 position and methyl substituted group in C-3 of pyrazolopyrimidine moiety showed better potent DPP-4 inhibition (IC50 = 21.4-59.8 nM). Furthermore, they had satisfactory selectivity over DPP-8 and DPP-9 Finally, the docking results revealed that compound 9n was stabilized at DPP-4 active site and would be a potential lead drug.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call