Abstract

In biological systems, the Keap1/Nrf2/antioxidant response element pathway determines the ability of mammalian cells to adapt and survive conditions of oxidative, electrophilic and inflammatory stress by regulating the production of cytoprotective enzymes NAD(P)H:quinone oxidoreductase 1 (NQO1, EC 1.6.99.2) being one of them. Novel biologically active benzenesulfonamides 2, 3, 5–7, penta-2,4-dienamide 4 and chromene-2-carboxamide 8 structurally augmented with an electron-deficient Michael acceptor enone or cyanoenone functionalities were prepared. A new biological activity was conferred to these molecules, that of induction of NQO1. The potency of induction was increased by incorporation of a nitrile group adjacent to the enone and the dinitrophenyl derivative 3 was the most promising inducer. Also, molecular docking of the new compounds in the Nrf2-binding site of Keap1 was performed to assess their ability to inhibit Keap1 which biologically leads to a consequent Nrf2 accumulation and enhanced gene expression of NQO1. Docking results showed considerable interactions between the new molecules and essential binding site amino acids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call