Abstract
This study investigates the potential of five compounds as novel anticancer agents. We examined their efficacy, mechanisms of action, and impact on various cancer cell lines, through a comprehensive set of experiments. Notably, compound 3e demonstrated superior activity compared to the positive control cisplatin, with a GI50 value of 6.3±0.7 μM against the breast cancer cell line (MCF-7). Compound 3b also displayed remarkable growth inhibition, yielding GI50 values of 8.7±0.2 μM (MCF-7) and 8.9±0.5 μM against the colon cancer cell line (HCT-116). Cell count experiments further confirmed the potent inhibitory effects of compounds 3e, 3b, and 3c on MCF-7 and HCT-116 cell growth. Compound 3e demonstrated a reduction of 55-60 % at GI50 and complete inhibition (100 %) at 2x GI50. Compound 3b exhibited 50-55 % reduction (GI50) and 90-95 % inhibition (2x GI50) in HCT-116 cells. Compound 3c displayed 75-80 % inhibition (2x GI50) and 35-40 % inhibition (GI50) in HCT-116 cells. In-depth mechanistic investigations unveiled valuable insights into the mode of action of compound 3e. The cell-cycle assay demonstrated G2/M phase arrest, DNA damage, and caspase-mediated apoptosis in both MCF-7 and HCT-116 cells. Caspase activation indicated a significant increase in apoptosis following exposure to compound 3e. Furthermore, compound 3e induced reactive oxygen species (ROS) production, influencing HCT-116 and MCF-7 cells differently. Elevated ROS production in HCT-116 cells and distinct effects in MCF-7 cells contribute to a deeper understanding of the cytotoxic mechanisms of compound 3e. Overall, these findings highlight the potential of the investigated compounds, particularly compound 3e, as effective inducers of apoptosis in cancer cells. Mechanistic insights into cell cycle arrest, caspase-mediated apoptosis, and ROS modulation provide a comprehensive understanding of their cytotoxic effects. This study offers significant contribution to the development of promising anticancer agents and their therapeutic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.