Abstract

A series of various substituted thiazole-pyrazole hybrids 5, 7, 8, and 9 were synthesized, and their chemical structures were confirmed by spectral data (infrared, 1H &13C NMR and Mass). The frontier molecular orbital structural and energetic properties of the targeting thiazole-pyrazole hybrids were explored using the DFT/B3LYP methodology. The data indicated that they had a low energy gap (ΔEH-L), 1.51–2.42 eV, and may be sorted as 6 < 9 < 7 < 8 < 4 < 3 < 5. The synthesized thiazole-pyrazole hybrids were explored for their activities towards HepG2, MCF-7, and HCT-116 in contrast to doxorubicin. The newly synthesized thiazole-pyrazole analogues demonstrated an acceptable efficiency towards the HepG2 cancer cell line in accordance with this order: 8 > 9 > 7 > 6. Meanwhile, most of the synthesized analogues displayed a significant reduction for the activity of the CAIX inhibitor, with IC50 = 0.071 ± 0.015 to 0.902 ± 0.043 µM. Likewise, they revealed an IC50 = 0.119 ± 0.043 to 0.906 ± 0.04 µM for CAXII inhibitor. Moreover, the newly synthesized thiazole-pyrazole analogues were exposed to the theoretical molecular docking study with PDB:1RHJ as the crystal structure of caspase-3 to examine their antiapoptotic effect as well as their certain properties on the caspase-3 enzyme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call