Abstract
A novel responsive visible light Cr-based MOF, Cr-PTC-HIna, was synthesized using the solvothermal method. Cr-PTC-HIna peaks were observed at 2θ = 9.04°, 12.71°, 14.88°, 25,48°, 27.72°, 28.97°, and 43.60° with a crystal size of 21 nm. Band gap energy achieved from the Cr-PTC HIna was 2.05 eV. Scanning Electron Microscope (SEM) analysis obtained a 3D structural morphology of MOFs Cr-PTC-HIna with a cylindrical tube shape and a particle size of 251.45 nm. Cr-PTC-HIna gave the optimum methylene blue degradation at pH of 7 under 250 watts mercury lamp irradiation for 180 minutes with degradation capacity of 95.40 mg/g. Electron holes and hydroxyl radicals were found as the dominant species contributing to methylene blue degradation. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of Chemical Reaction Engineering & Catalysis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.