Abstract

A novel thia-aza substituted macrocyclic diamide 7,10,13-triaza-1-thia-4,16-dioxa-20,24-dimethyl-2,3;17,18-dibenzo-cyclooctadecane-6,14-dione (L) was synthesized and stability of its complexes with several alkaline earth, transition and heavy metal ions were studied conductometrically in methanol solution. The resulting 1:1 Ag+–L complex found to be the most stable one among all cation complexes studied. The optimized structures of the ligand and its Ag+ complex were also investigated. Based on the preliminary results thus obtained, L was used as an excellent sensing material to prepare polymeric membrane (PME) and coated graphite (CGE) silver-selective electrodes. The electrodes revealed a Nernstian behavior over wide Ag+ ion concentration ranges (i.e., 2.0 × 10−6–1.0 × 10−2 M for PME and 5.0 × 10−7–1.0 × 10−2 M for CGE). The potentiometric responses were independent of pH of the test solution in the range 2.9–6.8. The electrodes possessed advantages of low resistance, relatively fast response time, long lifetimes and, especially, good selectivity relative to a wide variety of other cations. The electrodes were used, as indicator electrodes, in the potentiometric titration of silver ion and in the determination of Ag+ ion in waste water, photographic emulsion, radiographic and photographic films and dental amalgams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.