Abstract

AbstractTwo high‐entropy carbides, including stoichiometric (Zr,Ti,Nb,Ta,Hf)C and nonstoichiometric (Zr,Ti,Nb,Ta,Hf)C0.8, were prepared from monocarbides and ZrH2. Their sinterability, microstructures, mechanical properties, thermophysical properties, and oxidation behaviors were systematically compared. With the introduction of carbon vacancy, the sintering temperature was lowered up to 300°C, Vickers hardness was almost unaffected, whereas the strength decreased significantly generally due to the decrease of covalent bonds. The thermal conductivity shows a 50% decrease for nonstoichiometry high‐entropy carbide, which is a major consequence of the lower electrical conductivity. The oxidation resistance in high temperature water vapor was not sensitive to carbon stoichiometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.