Abstract
A series of novel ternary Co(II), Ni(II) and Cu(II) complexes containing 2,2′-dipyridylamine (dipya), 2,2′-bipyridine (bipy), and 1,10-phenanthroline (phen), as aromatic diamine ligands, and dianion of isophthalic acid (ipht) have been prepared by ligand exchange reactions from diluted H 2O/EtOH solutions. The complexes were characterized by elemental analysis, IR spectroscopy, magnetic susceptibility measurements and TG and DSC analysis. Three complexes, Cu(dipya)(ipht)·H 2O ( 1), Co(dipya)(ipht)·2H 2O ( 2) and Cu(ipht)(phen)·2H 2O ( 5) are polymeric with bis-monodentate ipht, while the other two complexes M(bipy)(ipht)·4H 2O, M Co(II) ( 3) and Ni(II) ( 4), contain ipht as a counter ion. All Co(II) and Ni(II) complexes are (pseudo)octahedral, while Cu(II) complexes have square-pyramidal or distorted octahedral geometry. The variable temperature magnetic susceptibility measurements showed very weak antiferromagnetic behaviour for all complexes. Dehydration processes, decomposition mechanisms and thermal stability of 1– 5 are assumed. One complex from the above series, [Ni(bipy)(H 2O) 4](ipht) ( 4), and one additional complex, [Co(bipy)(ipht)] n ( 6), are obtained as single-crystals and their structures are determined from X-ray diffraction data. In both structures M(II) centers are in deformed octahedral environment and they are linked by hemi-ipht ligands ( 4) and two different bridging ipht ligands ( 6). Three-dimensional networks in 4 and 6 are governed by strong noncovalent interactions. The cations and ipht anions in 4 are connected by hydrogen bonds building double layers parallel to ab-plane that are further packed by π– π interactions. In 6 double chains extending along b-axis are strengthened by interchain π– π interactions constructing a three-dimensional framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.