Abstract

Bulk nanocrystalline Pr(Fe0.75Co0.15Cu0.01Nb0.04B0.05)1.93 alloys were synthesized by annealing its melt-spinning ribbons under different pressures and temperatures. It was demonstrated that the average grain size decreases with increasing pressure from 3 GPa to 6 GPa under the same annealing temperature of 853 K but increases with increasing temperature from 823 K to 923 K under the same annealing pressure of 6 GPa. A negative correlation between the coercivity and average grain size was found in the present investigated system. Grain refinement without losing the advantage of volume fraction of magnetostrictive phase offers the sample annealed under 6 GPa and 853 K the optimized magnetostrictive property, which might make it potential material for magnetostrictive application.

Highlights

  • Bulk nanocrystalline Pr(Fe0.75Co0.15Cu0.01Nb0.04B0.05)1.93 alloys were synthesized by annealing its melt-spinning ribbons under different pressures and temperatures

  • Grain refinement without losing the advantage of volume fraction of magnetostrictive phase offers the sample annealed under 6 GPa and 853 K the optimized magnetostrictive property, which might make it potential material for magnetostrictive application

  • Because cubic Laves phase compounds with high Pr content could only be obtained under high pressure, traditional zone melting method for preparing single crystal or textured compounds is not available under such critical circumstance

Read more

Summary

Introduction

Bulk nanocrystalline Pr(Fe0.75Co0.15Cu0.01Nb0.04B0.05)1.93 alloys were synthesized by annealing its melt-spinning ribbons under different pressures and temperatures. Grain refinement without losing the advantage of volume fraction of magnetostrictive phase offers the sample annealed under 6 GPa and 853 K the optimized magnetostrictive property, which might make it potential material for magnetostrictive application.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call