Abstract
Carbon nanotube porins (CNTPs) are 10- to 20-nm-long segments of lipid-stabilized single-walled carbon nanotubes (CNTs) that can be inserted into phospholipid membranes to form nanometer-scale-diameter pores that approximate the geometry and many key transport characteristics of biological membrane channels. We describe protocols for CNTP synthesis by ultrasound-assisted cutting of long CNTs in the presence of lipid amphiphiles, and for validation of CNTP incorporation into a lipid membrane using a proton permeability assay. In addition, we describe protocols for measuring conductance of individual CNTPs in planar lipid bilayers and plasma membranes of live cells. The protocol for the preparation and testing of the CNTPs in vesicle systems takes 3 d, and single CNTP conductance measurements take 2-5 h. The CNTPs produced by this cutting protocol remain stable and active for at least 10-12 weeks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.