Abstract

In the fields of computer vision and pattern recognition, dictionary learning techniques have been widely applied. In classification tasks, synthesis dictionary learning is usually time-consuming during the classification stage because of the sparse reconstruction procedure. Analysis dictionary learning, which is another research line, is more favorable due to its flexible representative ability and low classification complexity. In this paper, we propose a novel discriminative analysis dictionary learning method to enhance classification performance. Particularly, we incorporate a linear classifier and the supervised information into the traditional analysis dictionary learning framework by adding a discrimination error term. A synthesis K-SVD based algorithm which can effectively constrain the sparsity is presented to solve the proposed model. Extensive comparison experiments on benchmark databases validate the satisfactory performance of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.