Abstract
In this paper, we investigate the inter-relationship between the conditions of the electrochemical synthesis of vanadium oxide compounds, their structural and morphological characteristics, kinetic parameters of the redox processes, and charge–discharge performance of lithium batteries with vanadium oxide cathodes. The materials studied were V2O5−y oxides and those with inserted sodium ions (Na–vanadium oxide compounds, Na–VOC) obtained electrochemically in the form of compact deposits on a metal substrate. The electrochemical synthesis of the oxides has been performed from aqueous vanadyl sulphate solutions. Optimal synthesis conditions (current density, pH, temperature, vanadyl sulphate and sodium sulphate concentrations), and subsequent optimal thermal treatment of the oxides, which provide high electrochemical activity of the cathode material and good adhesion of the oxide to the metal substrate, have been elucidated. A correlation between the structure of the vanadium oxides and Na–VOC, their morphology, impedance characteristics of the cathode, and lithium-ion solid state diffusion in the host cathode bulk has been established and discussed. A combination of analytical techniques (XRD, IR spectroscopy, TGA, BET, SEM) and electrochemical methods (cyclic voltammetry, chronopotentiometry, GITT, EIS) has been used in this study.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.