Abstract

Current study based on the synthesis of new thiazole derivatives via “one pot” multicomponent reaction, evaluation of their in vitro α-glucosidase inhibitory activities, and in silico studies. All synthetic compounds were fully characterized by 1H NMR, 13C NMR and EIMS. CHN analysis was also performed. These newly synthesized compounds showed activities in the range of IC50=9.06±0.10–82.50±1.70μM as compared to standard acarbose (IC50=38.25±0.12μM). It is worth mentioning that most of the compounds such as 1 (IC50=23.60±0.39μM), 2 (IC50=22.70±0.60μM), 3 (IC50=22.40±0.32μM), 4 (IC50=26.5±0.40μM), 6 (IC50=34.60±0.60μM), 7 (IC50=26.20±0.43μM), 8 (IC50=14.06±0.18μM), 9 (IC50=17.60±0.28μM), 10 (IC50=27.16±0.41μM), 11 (IC50=19.16±0.19μM), 12 (IC50=9.06±0.10μM), 13 (IC50=12.80±0.21μM), 14 (IC50=11.94±0.18μM), 15 (IC50=16.90±0.20μM), 16 (IC50=12.60±0.14μM), 17 (IC50=16.30±0.29μM), and 18 (IC50=32.60±0.61μM) exhibited potent inhibitory potential. Molecular docking study was performed in order to understand the molecular interactions between the molecule and enzyme. Newly identified α-glucosidase inhibitors except few were found to be completely non-toxic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call