Abstract

A series of N-substituted amide linked triazolyl β-d-glucopyranoside derivatives (4a-l) were synthesized and their in vitro inhibitory activity against yeast α-glucosidase enzyme [EC.3.2.1.20] was assessed. Compounds 4e (IC50=156.06μM), 4f (IC50=147.94μM), 4k (IC50=127.71μM) and 4l (IC50=121.33μM) were identified as the most potent inhibitors for α-glucosidase as compared to acarbose (IC50=130.98μM) under the same in vitro experimental conditions. Kinetic study showed that both 4e and 4f inhibit the enzyme in a competitive manner with p-nitrophenyl α-d-glucopyranoside as substrate. Molecular docking studies of 4e, 4f, 4k and 4l were also carried out using homology model of α-glucosidase to find out the binding modes responsible for the inhibitory activity. This study revealed that the binding affinity of compounds 4e, 4f, 4k and 4l for α-glucosidase were −8.2, −8.6, −8.3 and −8.5kcal/mol respectively, compared to that of acarbose (−8.9kcal/mol). The results suggest that the N-substituted amide linked triazole glycoconjugates can reasonably mimic the substrates for the yeast α-glucosidase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.