Abstract

BackgroundQuinolines have demonstrated various biological activities such as antimalarial, antibacterial and anticancer. Hence, compounds with such scaffold have been used as lead in drug development. This project is, therefore, aimed to synthesis and evaluates some biological activities of quinoline analogs.Methods2-Chloro-7-fluoroquinoline-3-carbaldehydes were synthesized by the application of Vilsmeier–Haack reaction. The chlorine in the fluoroquinoline-3-carbaldehyde was replaced with various nucleophiles. The aldehyde functional group was also converted to carboxylic acid and imine groups using oxidizing agent and various amines, respectively. The structures of the compounds synthesized were characterized by spectroscopic methods. Disc diffusion and DPPH assays were used to evaluate the antibacterial and antioxidant activities, respectively. The in silico molecular docking analysis of the synthesized compounds were done using AutoDock Vina against E. coli DNA Gyrase B and human topoisomerase IIα. The drug likeness properties were assessed using SwissADME and PreADMET.ResultsNine novel quinoline derivatives were synthesized in good yields. The in vitro antibacterial activity of the synthesized compounds was beyond 9.3 mm inhibition zone (IZ). Compounds 4, 5, 6, 7, 8, 10, 15, and 16 exhibited activity against E. coli, P. aeruginosa, S. aureus and S. pyogenes with IZ ranging from 7.3 ± 0.67 to 15.3 ± 0.33 mm at 200 μg/mL. Compound 9 displayed IZ against three of the bacterial strains except S. aureus. The IC50 for the radical scavenging activity of the synthesized compounds were from 5.31 to 16.71 μg/mL. The binding affinities of the synthesized compounds were from − 6.1 to − 7.2 kcal/mol against E. coli DNA gyrase B and − 6.8 to − 7.4 kcal/mol against human topoisomerase IIα. All of the synthesized compounds obeyed Lipinski’s rule of five without violation.ConclusionCompounds 4, 5, 6, 7, 8, 10, 15, and 16 displayed activity against Gram positive and Gram negative bacterial strains indicating that these compounds might be used as broad spectrum bactericidal activity. Compound 8 (13.6 ± 0.22 mm) showed better IZ against P. aeruginosa compared with ciprofloxacin (10.0 ± 0.45 mm) demonstrating the potential of this compound as antibacterial agent against this strain. Compounds 5, 6, 7, 8, 9 and 10 showed comparable binding affinities in their in silico molecular docking analysis against E. coli DNA gyrase B. All of the synthesized compounds also obeyed Lipinski’s rule of five without violation which suggests these compounds as antibacterial agents for further study. Compounds 7 and 8 were proved to be a very potent radical scavenger with IC50 values of 5.31 and 5.41 μg/mL, respectively. Compound 5, 6, 8, 10 and 16 had comparable binding affinity against human topoisomerase IIα suggesting these compounds as a possible candidate for anticancer drugs.

Highlights

  • Microbial infections remain a serious health threat throughout the world even in the modern era [1]

  • Compound 5, 6, 8, 10 and 16 had comparable binding affinity against human topoisomerase IIα suggesting these compounds as a possible candidate for anticancer drugs

  • The 1H and 13C Nuclear magnetic resonance (NMR) spectra of the synthesized compounds were recorded on Bruker avance 400 MHz NMR spectrophotometer using chloroform-d or methanol-d4 as the solvent and the values are expressed in δ ppm

Read more

Summary

Introduction

Microbial infections remain a serious health threat throughout the world even in the modern era [1]. The beginning of the modern “antibiotic era” pioneered by Paul Ehrlich and Alexander Fleming was meant to synthesize chemical compounds which could destroy only the parasite harbored within the organism without affecting the host significantly. This breakthrough led to the development of a large-scale and systematic screening program in 1904 to find a drug against syphilis, a disease that was endemic and almost incurable at that time [3]. Quinolines have demonstrated various biological activities such as antimalarial, antibacterial and anticancer Compounds with such scaffold have been used as lead in drug development. This project is, aimed to synthesis and evaluates some biological activities of quinoline analogs

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call