Abstract
Grape polyphenols, especially hydroxycinnamic acids such as caftaric and caffeic acid, are prone to enzymatic oxidation reactions during the winemaking process, forming o-quinones and leading to color darkening. Glutathione is capable of trapping these o-quinones and thus limiting juice browning. In this study, the addition of glutathione or cysteinylglycine onto caftaric or caffeic acid o-quinones formed by polyphenoloxidase-catalyzed reactions was investigated by UPLC-DAD-ESIMS and NMR data analyses. Complete identification of adducts has been achieved via NMR data. The results confirmed that the favored reaction is the substitution of the sulfanyl group of cysteine at C-2 of the aromatic ring. Several minor isomers, namely, the cis-isomer of the 2-S adduct and trans-isomers of the 5-S and 6-S adducts, and the 2,5-di-S-glutathionyl adducts were also identified and quantified by qNMR. With the exception of 2-(S-glutathionyl)- and 2,5-di(S-glutathionyl)-trans-caftaric acid, these products had never been formally identified. In particular, the 5-S and 6-S derivatives are reported here for the first time. The first formal identification of 2-S cis-derivatives is also provided. Moreover, NMR and UPLC-DAD-ESIMS analysis showed that signature UV and MS spectra can serve as markers of the conformation and substitution position in the aromatic ring for each of the isomers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.