Abstract
Ni–Ce/SiO2 catalysts were prepared by calcination under Ar, CO2, O2 and H2 ambience, and applied in CO2 reforming of methane for synthesis gas production. BET, XRD, XPS, TPR, SEM, TEM and TPH techniques were employed to characterize the fresh and used catalysts. Highly dispersed nickel oxides bearing stronger interaction with SiO2 prevented the metal sintering. The formation of reactive carbon species on Ni–Ce/SiO2 catalyst calcined under Ar ambience effectively promoted the carbon elimination and kept the catalyst more stable. Nevertheless, the oxygen storage capacity of CeO2 might partly lose on Ni–Ce/SiO2 calcined under H2 ambience. As a result, the inhibition of carbon elimination and the deposition of inert carbon were responsible for its partial deactivation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.