Abstract
Three methods of functionalizing ZnO NW surfaces with biotin were demonstrated. Biotinylated ZnO NWs were found to dissolve during exposure to deionized (DI) water, so a chemical vapor deposition (CVD) process was developed for parylene-A, a common moisture barrier with an amine group which allows further functionalization. Parylene-A coated ZnO NWs were found to be resistant to dissolution. Electrical measurements on parylene-A coated nanobridge devices showed normal operation with higher dark current and an attenuated response to UV and O 2, indicating the ability to modulate environmental sensitivity. This work demonstrates the novel use of parylene-A coatings as an encapsulation layer as well as a potential starting platform for general functionalization of ZnO NW devices for selective sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.