Abstract

This paper describes the characteristic of negative group delay (NGD) circuits for various configurations including first-order, distributed, and second-order RC circuit configurations. This study includes locus, magnitude, and phase characteristics of the NGD circuits. The simplest NGD circuit is available using first-order RC or RL configuration. As an example of distributed circuit configuration, it is verified that losses in a distributed line causes NGD characteristic at higher cut-off band of a coupled four-line bandpass filter. Also, novel wideband NGD circuits using second-order RC configuration, instead of conventional RLC configuration, are proposed. Adding a parallel resistor to a parallel-T filter enables NGD characteristic to it. Also, a Wien-Robinson bridge is modified to have NGD characteristic by controlling the voltage division ratio. They are fabricated on MMIC substrate, and their NGD characteristics are verified with measured results. They have larger insertion loss than multi-stage RLC NGD circuits, however they can realize second-order NGD characteristic without practical implementation of inductors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.