Abstract
We investigate the synthesis problem in a quantitative game-theoretic setting with branching-time objectives. The objectives are given in a recursive modal logic with semantics defined over a multi-weighted extension of a Kripke structure where each transition is annotated with multiple nonnegative weights representing quantitative resources such as discrete time, energy and cost. The objectives may express bounds on the accumulation of each resource both in a global scope and in a local scope (on subformulae) utilizing a reset operator. We show that both the model checking problem as well as the synthesis problem are decidable and that the model checking problem is EXPTIME-complete, while the synthesis problem is in 2-EXPTIME and is NEXPTIME-hard. Furthermore, we encode both problems to the calculation of maximal fixed points on dependency graphs, thus achieving on-the-fly algorithms with the possibility of early termination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.