Abstract

Biostable polyurethane/hydroxyapatite (PU/HA) composites with potential application as bone replacement materials were synthesized in bulk and processed in a screw extruder. The polyurethanes (PU) were prepared by reacting an aliphatic diisocyanate, 4-methylene-bis-diisocyanate (MDI), with poly-(epsilon-caprolactone) (PCL) diols and polytetramethylene oxide (PTMO) of different molecular weights, extended with 1, 4-butanediol (BDO). Glass-transition temperatures were measured by differential scanning calorimetry (DSC). The specific PU groups were assessed by total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The effects of polymer chemistry and filler content on the rheological behaviour were studied by oscillatory rheometry. Polymers with larger chain lengths showed higher viscosity and, for identical chain lengths, polyether urethanes seem to have higher viscosities than polyester based urethanes. A lubricating effect was found for composites containing 50% weight of filler, whereas at higher filler contents a solid-like behaviour was measured. Polymer chemistry seems to be affected by ageing but not so by the presence of filler. Ageing is characterized by a decrease in the concentration of hydrogen bonds involving between urethane linkages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call