Abstract
In this work, a tridentate Schiff base of 2-pyridinecarboxaldehyde and its Ni(II) complex have been newly synthesized and characterized by the IR and NMR spectroscopies together with the elemental analysis. In addition, optimized geometries, the Natural Bond Orbital (NBO) analyses, assignment of the IR bands and NMR chemical shifts of the synthesized compounds were computed by using density functional theory (DFT) methods. In the optimized geometry of the free ligand, the aromatic rings are not in the same plane. But, the Ni complex is square planar, where the deprotonated Schiff base acts as a N3-tridentate ligand. The chloro ligand occupies another coordination position of the complex. The DFT-calculated vibrational wavenumbers and NMR chemical shifts are in agreement with the experimental values, confirming suitability of the optimized geometries for the Schiff base and Ni(II) complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.