Abstract
We report a new synthesis route towards polycrystalline Ba2FePnSe5 (Pn = Sb, Bi) chalcogenides based on ball milling and subsequent spark plasma sintering. The polycrystalline samples were characterized by transmission electron microscopy and powder X-ray diffraction. We discovered that both compounds undergo rapid, radiation induced phase changes between a crystalline and an amorphous phase. Thin layers of amorphous Ba2FePnSe5 (Pn = Sb, Bi) were obtained by applying 0.3 ms laser pulses (λ = 1064 nm) on the surface of polycrystalline samples. By using a series of subsequent laser pulses at room temperature the surface of Ba2FeBiSe5 can be reversibly changed between amorphous and crystalline states. The thermal conductivity can be used to follow the amorphization and recrystallization processes as a function of laser pulses. Resistivity measurements and calculations of the electronic structure revealed band gaps of 1.04 eV (Pn = Bi) and 1.14 eV (Pn = Sb). We found anomalies in the thermal conductivity of Ba2FePnSe5 (Pn = Sb, Bi) at the Neel temperature due to the antiferromagnetic ordering of the Fe spins. We also show that the distortion of the PnSe6 octahedra is caused by stereoactive 5s2 and 6s2 lone pairs of Sb and Bi.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.