Abstract

To understand the electron transport properties of transition metal nitrides (MN), electronic structure relationship between metal and corresponding nitrides is important. In binary nitrides, when nitrogen atoms occupy interstitial sites of metal lattice, volume expansion started initially without changing structure of metal lattice. Above certain concentration of nitrogen into interstitial sites of lattice, the system starts stabilizing its energy to minimum that in turn changes to another crystal structure. The chemical bonding in MN is due to the mixing of d-orbitals of M and p-orbitals of N. This is confirmed theoretically and experimentally such as X-ray photoelectron spectroscopy. The Fermi energy is generally lowered by the introduction of vacancies. However, reports on the particle size effect in the electrical resistivity of nitrides are scanty. One reason is that the role of the particle size in resistivity is difficult to determine because there is a need to understand N concentration. It poses a challenge to the synthesis of nanostructured transition metal nitrides. The transition metal binary nitrides show unusual electron transport, optical and magnetic properties as compared to their metal counterparts. Electronic properties of all transition metal nitrides known till date are discussed. Different ways of synthesis of nitrides and their applications are mentioned.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.