Abstract

A series of novel analogues based on a diazole-imide pharmacophore were synthesized by diazotizing substituted 1,3,4-thia-/oxadiazol-2-amines and subsequently coupling the resulting diazonium salts with N-substituted cyclic imides. The resulting compounds C1 to C28 were characterized by various spectral methods, viz. IR, NMR and mass spectroscopy. All the synthesized compounds were tested against two human cancer cell lines: human breast adenocarcinoma cell line MCF-7 and colorectal adenocarcinoma cell line HT-29. Among the synthesized compounds, C14 (2-(4-chloro-3-((5-(4-nitrophenyl)-1,3,4-thiadiazol-2-yl)diazenyl)phenyl)-4,5,6,7-tetrahydro-1H-isoindole-1,3(2H)-dione) emerged as a potential candidate against both MCF-7 and HT-29 with [Formula: see text] values of 0.09 ± 0.02 [Formula: see text]M and 0.11 ± 0.03 [Formula: see text]M, respectively. Similarly, compound C16 displayed highest anticancer activity against MCF-7 cell line with [Formula: see text] = 0.07 ± 0.02 [Formula: see text]M. Target fishing (inverse docking) using ChemMapper server identified EGFR tyrosine and CDK2 kinases as high priority targets for this pharmacophore. Computational docking (AutoDock 4.2) was used to analyse the interactions between the target proteins and active compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call