Abstract

Three novel copper(II) complexes CuL1Cl2 (1) (L1=4′-(3-methoxyphenyl)-2,2′:6′- 2″-terpyridine), CuL2Cl2 (2) (L2=4′-(4-methoxyphenyl)-2,2′:6′-2″-terpyridine) and CuL3Cl2 (3) (L3=4′-(3,5-dimethoxyphenyl)-2,2′:6′-2″-terpyridine) have been synthesized and characterized. Absorption spectral titration experiments, ethidium bromide displacement assays, and cyclic voltammetric experiments were carried out and the results suggested that these complexes bound to DNA through an intercalative mode. Moreover, these complexes were found to cleave pBR322 DNA efficiently in the presence of glutathione (GSH), and exhibited good anticancer activity against HeLa, Hep-G2 and BEL-7402 cell lines. Nuclear chromatin cleavage was also observed by acridine orange/ethidium bromide (AO/EB) staining assays and comet assays. These results demonstrated that these three Cu(II) complexes caused DNA damage and induced the apoptosis of HeLa cells. Mechanistic investigations revealed the participation of reactive oxygen species which can be trapped by reactive oxygen species (ROS) radical scavengers and ROS sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.