Abstract

A series of novel bis-naphalenyl compounds with different diamine linkers were synthesized and characterized by 1H NMR, 13C NMR, and HR-MS. The DNA binding abilities of the compounds were studied by using flourescence titration, DNA thermal denaturation experiments, viscosity titration, and NMR studies. The DNA binding abilities of all the bis-naphalenyl compounds were on the same order of magnitude. Compared with the groove binding mode of the monomer, the bis-naphalenyl compounds exhibited partial intercalating binding mode. The cytotoxicity activities of the compounds were evaluated by MTT assay in vitro. According to the results of MTT assay, bis-naphalenyl compound 3c with hexamethylenediamine linker, and 3d with p-xylylenediamine linker were found to be more toxic against BGC823 cells. The IC50 values of the two compounds were similar to that of the control drug (5-Fluorouracil) on BGC823 cells. Compared with the results on BGC823 cells, better results were found on SW480 cells. Compounds 3c and 3d exhibited smaller IC50 values than that of control drug (5-Fluorouracil). The IC50 values of 3c, 3d, and 5-Fluorouracil were 52.01, 66.09, and 230.11 μM, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.