Abstract

Reaction of 4-methoxy-5-oxo-5H-furo[3,2-g]chromene-6-carboxaldehyde (1) with hydroxylamine hydrochloride resulted in ring transformation producing the novel 5-hydroxy-4-methoxy-7-oxo-7H-furo[3,2-g]chromene-6-carbonitrile (HMOFCC). The structure was deduced based on its correct elemental analysis and spectral data (IR, 1H NMR, 13C NMR and mass spectra). The geometries of the HMOFCC were completely optimized by means of DFT-B3LYP/6-311++G (d,p) theoretical level. The ground state properties such as; total energy, the energy of HOMO and LUMO and Mulliken atomic charges were also determined. In addition, the two solvents; polar (methanol) and nonpolar (dioxane) were utilized to extract the electronic absorption spectra. The assignment of the detected bands was discussed by TD-DFT calculations. A cauliflower-like, as well as, needle-like leaves morphologies were observed using scanning electron microscope images. Two direct optical band gaps were extracted from the photon energy dependence of absorption coefficient at the band edges and found to be 1.16 and 2.56 eV. A characteristic emission peak of photoluminescence spectrum was observed and shifted depending on the solvent type. A remarkable rectification characteristic of HMOFCC/p-Si heterojunction confirms the diode-like behavior. The main important parameters like series resistance, shunt resistance and reverse saturation current show illumination dependence under influence of the illumination intensity range 20–100 mW/cm2. The heterojunction based HMOFCC showed phototransient properties under various illumination intensities which give the recommendation for the studied heterojunction in the field of optoelectronic device application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.