Abstract
A dual-path coupled-line circular ring resonator filter synthesis is presented. The topology comprises identical coupled lines in series duplicated to form dual-path coupled-line interconnections. A bandpass response of nth order equal to (n/2) + 1, corresponds to controllable transmission zeros (TZs) found on both sides of the passband by varying the values of the even- and odd-mode impedances of the coupled lines, denoted Zoe and Zoo, respectively. Concerning the efficiency of controllable electrical characteristics of the resonator filter, such as in-band matching level, high selective response, and wide bandwidth, and fixing the position of the TZ frequencies, the proposed method using asymmetrical quarter-wavelength coupled lines in a circular ring resonator filter is superior to existing methods. Ultimately, the proposed bandpass filter is implemented on contrast dielectric substrate FR-4 and Taconic TRF-45 substrates using a planar form of microstrip technology to verify the synthesis equation. The measurement results indicate that the filter achieved more than 40% fractional bandwidth with excellent in-band matching levels and a controllable filter order. Both measurement and simulation results are in good agreement regarding return and insertion loss values, thus validating the proposed designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.