Abstract

An optimization of the pyridylpiperazine series against Plasmodium falciparum has been performed, exploring a structure-activity relationship carried out on the toluyl fragment of hit 1, a compound with low micromolar activity against Plasmodium falciparum discovered by high-throughput screening. After confirming the crucial role played by this aryl fragment in the antiplasmodial activity, the replacement of the ortho-methyl substituent of 1 by halogenated ones led to an improvement for four analogs, either in terms of potency, expected pharmacokinetics profile, or both. Further introduction of endocyclic nitrogens in this fragment identified two more optimized compounds, 20 and 23, which are expected to be much more metabolically stable than 1. Additional assessment of the cytotoxicity, Ligand Lipophilic Efficiency, potency against the chloroquine-resistant Dd2 strain and in silico ADMET predictions revealed a satisfactory profile for most compounds, ultimately identifying the four optimized compounds 7, 9, 20 and 23 as promising compounds for further lead optimization of this series against Plasmodium falciparum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.