Abstract

Niclosamide, an oral anthelmintic drug, could inhibit SARS-CoV-2 virus replication through autophagy induction, but high cytotoxicity and poor oral bioavailability limited its application. Twenty-three niclosamide analogs were designed and synthesized, of which compound 21 was found to exhibit the best anti-SARS-CoV-2 efficacy (EC50 = 1.00 μM for 24 h), lower cytotoxicity (CC50 = 4.73 μM for 48 h), better pharmacokinetic, and it was also well tolerated in the sub-acute toxicity study in mice. To further improve the pharmacokinetics of 21, three prodrugs have been synthesized. The pharmacokinetics of 24 indicates its potential for further research (AUClast was 3-fold of compound 21). Western blot assay indicated that compound 21 could down-regulate SKP2 expression and increase BECN1 levels in Vero-E6 cells, indicating the antiviral mechanism of 21 was related to modulating the autophagy processes in host cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.