Abstract

3,5-Bis(arylidene)-4-piperidone (BAP) derivatives display good antitumour and anti-inflammatory activities because of their double α,β-unsaturated ketone structural characteristics. If N-benzenesulfonyl substituents are introduced into BAPs, the configuration of the BAPs would change significantly and their anti-inflammatory activities should improve. Four N-benzenesulfonyl BAPs, namely (3E,5E)-1-(4-methylbenzenesulfonyl)-3,5-bis[4-(trifluoromethyl)benzylidene]piperidin-4-one dichloromethane monosolvate, C28H21F6NO3S·CH2Cl2, (4), (3E,5E)-1-(4-fluorobenzenesulfonyl)-3,5-bis[4-(trifluoromethyl)benzylidene]piperidin-4-one, C27H18F7NO3S, (5), (3E,5E)-1-(4-nitrobenzenesulfonyl)-3,5-bis[4-(trifluoromethyl)benzylidene]piperidin-4-one, C27H18F6N2O5S, (6), and (3E,5E)-1-(4-cyanobenzenesulfonyl)-3,5-bis[4-(trifluoromethyl)benzylidene]piperidin-4-one dichloromethane monosolvate, C28H18F6N2O3S·CH2Cl2, (7), were prepared by Claisen-Schmidt condensation and N-sulfonylation. They were characterized by NMR, FT-IR and HRMS (high resolution mass spectrometry). Single-crystal structure analysis reveals that the two 4-(trifluoromethyl)phenyl rings on both sides of the piperidone ring in (4)-(7) adopt an E stereochemistry of the olefinic double bonds. Molecules of both (4) and (6) are connected by hydrogen bonds into one-dimensional chains. In (5) and (7), pairs of adjacent molecules embrace through intermolecular hydrogen bonds to form a bimolecular combination, which are further extended into a two-dimensional sheet. The anti-inflammatory activity data reveal that (4)-(7) significantly inhibit LPS-induced interleukin (IL-6) and tumour necrosis factor (TNF-α) secretion. Most importantly, (6) and (7), with strong electron-withdrawing substituents, display more potential inhibitory effects than (4) and (5).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.