Abstract
A five-coordinate chloroiron(III) complex has been synthesized and characterized by X-ray diffraction analysis and UV-Vis spectroscopy. The maximum one-photon absorption (OPA) wavelengths recorded by both linear optical measurements and quantum mechanical computations using the configuration interaction (CI) method are estimated to be shorter than 400 nm in the UV region, showing good optical transparency to visible light. To investigate the microscopic third-order nonlinear optical (NLO) behavior of the title compound, we have computed both dispersion-free (static) and also frequency-dependent (dynamic) linear polarizabilities (α) and second hyperpolarizabilities (γ) at λ = 825–1125 nm and 1050–1600 nm wavelength areas using the time-dependent Hartree–Fock (TDHF) method. The ab-initio calculation results with non-zero values on (hyper)polarizabilities indicate that the synthesized molecule might possess microscopic third-order NLO phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Nonlinear Optical Physics & Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.