Abstract

The title com-pound, C32H28F2N2O2, a highly functionalized tetra-hydro-pyridine, was synthesized by a one-pot multi-com-ponent reaction of 4-fluoro-aniline, ethyl aceto-acetate and benzaldehyde at room temperature using sodium lauryl sulfate as a catalyst. The com-pound crystallizes with two mol-ecules in the asymmetric unit. The tetra-hydro-pyridine ring adopts a distorted boat conformation in both mol-ecules and the dihedral angles between the planes of the fluoro-substituted rings are 77.1 (6) and 77.3 (6)°. The amino group and carbonyl O atom are involved in an intra-molecular N-H⋯O hydrogen bond, thereby generating an S(6) ring motif. In the crystal, mol-ecules are linked by C-H⋯F hydrogen bonds forming a three-dimensional network and C-H⋯π inter-actions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H⋯H (47.9%), C⋯H/H⋯C (30.7%) and F⋯H/H⋯F (12.4%) contacts. The optimized structure calculated using density functional theory (DFT) at the B3LYP/6-311+G(2d,p) level is compared with the experimentally determined molecular structure in the solid state. The HOMO-LUMO behaviour was used to determine the energy gap and the Natural Bond Orbital (NBO) analysis was done to study donor-acceptor interconnections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call