Abstract

The substitution of chloro or bromo groups in tetracene gives rise to the change of crystal structure, having a substantial effect on carrier transport. Halogenated tetracene derivatives were synthesized and grown into single crystals. Monosubstituted 5-bromo- and 5-chlorotetracenes have the herringbone-type structure, while 5,11-dichlorotetracene has the slipped pi stacking structure. Mobility of 5,11-dichlorotetracene was measured to be as high as 1.6 cm2/V.s in single-crystal transistors. The pi stacking structure, which enhances pi orbital overlap and facilitates carrier transport, may thus be responsible for this high mobility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call