Abstract

A new triple molybdate Na25Cs8Fe5(MoO4)24 was synthesized using solid state reactions and studied with X-ray powder diffraction, second harmonic generation (SHG) technique, differential scanning calorimetry, Mössbauer and dielectric impedance spectroscopy. Single crystals of Na25Cs8Fe5(MoO4)24 were obtained and its structure was solved (the space group P1¯, a=12.5814(5), b=13.8989(5), c=28.4386(9)Å, α=90.108(2), β=90.064(2), γ=90.020(2)°, V=4973.0(3)Å3, Z=2, R=0.0440). Characteristic features of the structure are polyhedral layers composed of pairs of edge-shared FeO6 and (Fe, Na)O6 octahedra, which are connected by bridging МоО4 tetrahedra. The layers share common vertices with bridging МоО4 tetrahedra to form an open 3D framework with the cavities occupied by the Cs+ and Na+ cations. The compound undergoes first-order phase transformation at 642K and above this phase transition, electrical conductivity reaches 10−3–10−2Scm−1. Thus, Na25Cs8Fe5(MoO4)24 may be considered as a promising compound for developing new materials with high ionic conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.