Abstract

Calcium dialuminate, CaAl4O7, nanopowders with a grossite-type structure, doped with chromium ions, were synthesized via the combined sol–gel solution combustion method. The evolution of phase composition, crystal structure, and microstructural parameters of the nanocrystalline materials depending on the temperature of the thermal treatment was investigated via X-ray powder diffraction and applying the Rietveld refinement technique. The photoluminescent properties of CaAl4O7 nanophosphors activated with Cr3+ ions were studied over the temperature range of 4.5–325 K. The samples show deep red and near-infrared luminescence due to the 2E → 4A2 and 4T2 → 4A2 energy level transitions of Cr3+ ions under excitation in the two broad emission bands in the visible spectral region. The R lines emission reveals a strong temperature dependence. The feasibility of the material for non-contact luminescence sensing is investigated, and good sensitivity is obtained based on the (R2/R1) luminescence intensity ratio and the lifetime of the emission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call