Abstract

Ternary intermetallics, A2Co12As7 (A=Ca, Y, Ce–Yb), have been synthesized by annealing mixtures of elements in molten Bi at 1223K. The materials obtained crystallize in the P63/m variant of the Zr2Fe12P7 structure type. The unit cell volume shows a monotonic decrease with the increasing atomic number of the rare-earth metal, with the exception of Ce-, Eu-, and Yb-containing compounds. An examination of these outliers with X-ray absorption near edge structures (XANES) spectroscopy revealed mixed valence of Ce, Eu, and Yb, with the average oxidation states of +3.20(1), +2.47(5), and +2.91(1), respectively, at room temperature. Magnetic behavior of A2Co12As7 is generally characterized by ferromagnetic ordering of Co 3d moments at 100–140K, followed by low-temperature ordering of rare-earth 4f moments. The 3d-4f magnetic coupling changes from antiferromagnetic for A=Pr–Sm to ferromagnetic for A=Ce and Eu–Yb. Polarized neutron scattering experiments were performed to support the postulated ferro- and ferrimagnetic ground states for Ce2Co12As7 and Nd2Co12As7, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.