Abstract

In this article, we report a new approach toward synthesis of pyridine–imide oligomers (PIOs). Using this approach, both dimer and trimer were one-pot synthesized from acylation of monomeric monoamide with monomeric dichloride. The yield of trimer was dependent on the alkoxyl terminals: it was 30% for methoyl group, whereas it was 95% for 3-chloro-1-propoxyl terminal. Acylation of dimeric monoamide with monomeric dichloride produced trimer, tetramer, and pentamer in a yield of 34%, 33%, and 28%, respectively. The synthesis was proposed to be mediated through an exchange between pyridine-2-carboxamide and pyridine-2-carbonyl chloride, both forming intramolecular or intermolecular hydrogen-bonds between pyridine–nitrogen and pyridine-2-amide hydrogen atoms. Crystal structure from three trimers with different terminal groups was reported. Analysis on the crystal structures revealed that these three trimers had different local conformations. The different local conformations were originated from the structural tunability of the imide unit in either the coplanarity or bond parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call