Abstract

La0.7Sr0.3Cr0.4Mn0.6O3−δ (perovskite-type) nanocomposites impregnated with XCu0.75Ni0.25 have been synthesized by sol–gel method. Crystal structure of LSCM–Cu0.75Ni0.25 composites were refined by the Rietveld method. Crystal symmetry of CuO and NiO nanoparticles have monoclinic $$ C12/c $$ and cubic $$ Fm\bar{3}m $$ symmetry, respectively, but after sintering at 1,200 °C and reducing the temperature to 600 °C, it’s transformed into a new Cu0.75Ni0.25 intermetallic solid solution without secondary phase. We have detected a cationic inter-diffusion in Cu ↔ Ni interphase crystals during this reduction process; however, when sintering time exceeds 2 h at 1,200 °C this reaction mechanism is interrupted by a sublimation phenomenon; which causes Cu2O cubic structure segregation from monoclinic CuO structure. This leads to Cu precipitation from the Cu1−x Ni x solid solution. Cu0.75Ni0.25 inhibits the LSCM perovskite-type grain growth (t ≈ 220 nm). Electrical conductivity indicates the presence of semiconductor and metallic-type behaviors with a maximum electrical conductivity (800 °C) >4.5 (log σ, Sm cm−1). When Cu0.75Ni0.25 concentration was 25 and 35 %, semiconductor behavior were dominated. Thermal expansion coefficients showed a linear dependence inversely proportional to Cu0.75Ni0.25 concentration. Electrical conductivity, Rietveld analysis, Porosity, TEC, and E a behaviors lead to the conclusion that the anodes between 25 and 35 % (Cu0.75Ni0.25) are closer to applications at SOFC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.