Abstract
A new chalcone derivative, 1-(4-aminophenyl)-3-(3,4-dimethoxyphenyl)-prop-2-en-1-one (DMAC) was synthesized and single crystals were grown by slow evaporation technique. The FT-Raman and FT-IR spectra of the sample were recorded in the region 3700–100 cm−1 and 4000–400 cm−1, respectively. The spectra were interpreted with the aid of normal coordinate analysis following structure optimizations and force field calculations based on density functional theory (DFT) at the B3LYP/6-311+G(d,p) level of theory. Normal coordinate calculations were performed using the DFT force field, corrected by a recommended set of scaling factors, yielding fairly good agreement between the observed and calculated wavenumbers. DMAC is thermally stable up to 220.0 °C and optically transparent in the visible region. Information about the size, shape, charge density distribution and site of chemical reactivity of the molecule has been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). The SHG efficiency of DMAC is observed to be 10 times that of standard urea crystal of identical particle size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.